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Curse of “black box” Modelling

* Black-box models have achieved state-of-the-art performance on benchmark
datasets and real-world applications.

— Their internal mechanisms are not understandable by humans.(Model’s Transparency)
— Unable to explain their predictions comprehensibly to humans (Decision’s Explainability)
— Unable to provide justifications or reasoning for their decisions (Decision’s Interpretability)

You cannot say, ‘I'll do open-heart
surgery because the neural
network said so.’ You have to have

a very good reason.”

Christos Faloutsos, professor
of computer science, CMU
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Post-hoc Explanations

* Aim to shed light on why a particular prediction was made by a black-box model.

* There is a narrow difference between explaining something and justifying it.
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Analogy of post hoc explanations in Real-life (1)

* On October 9,2001, Robert Durst (Black-box model), murdered his neighbor Morris Black.
* During the trial, Durst's defense team (Post-hoc explainer) argued that he acted in self-defense.
* In November 2003, Durst was acquitted of murder charges.

* In the Netflix show "The Jinx," there's a scene where Durst talks to himself in a bathroom after an
interview while still being recorded. He confessed that has killed his neighbor and two others.

* Both murder and self-defense are convincing stories.

* But does that mean that the explanation by the defense team reflected the truth?

* Only the killer (Black-box model) knows it.
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Analogy of post hoc explanations in Real-life (2)

A Black-box Model rejects a loan application solely based on the subject’s race

Post-hoc explanation can justify that income and employment status were the
critical factors for the decision.

* The connection between Post-hoc explanation and the model’s actual behavior can
never be proven

—illusion of explainability

* Post-hoc explanations can be even more dangerous than black-box models.

— Sometimes, they can cover up the mistakes of black-box models by giving believable reasons.
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Post-hoc Explanations are inherently wrong!

Je7
Cynthia Rudin
Professor of Computer

* Another good argument: If the post-hoc explanation fully matched the Science, Duke University
original model, why would we need the original model after all?

nature machine intelligence
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nature > nature machine intelligence > perspectives > article

Perspective | Published: 13 May 2019

Stop explaining black box machine learning models
for high stakes decisions and use interpretable
models instead

Cynthia Rudin ™

Nature Machine Intelligence 1, 206-215 (2019) ‘ Cite this article
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New regulations may restrict use of black-box models
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EU Al Act: first regulation on
artificial intelligence

The use of artificial intelligence in the EU will be regulated by the Al Act, the world’s
first comprehensive Al law. Find out how it will protect you.

Published: 08-06-2023 « Last updated: 19-12-2023 - 11:45
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New regulations may restrict use of black-box models

* EU Al Act

—Regulating high-risk Al applications used in critical infrastructure, such as
transportation and healthcare, as well as those with potential risks to
fundamental rights, safety, or other public interests.

—Set of requirements to ensure their safety, transparency, and
accountability.
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An illusion of black-box models’ universal superiority

* Real-world datasets typically contain between 8.0% and 38.5% label noise
(Semenova, et al., 2023)

* (Semenova, et al., 2023) provided theoretical evidence that in noisy datasets, such as
datasets about humans like healthcare, criminal justice, and finance, simple,
interpretable classifiers should perform as well as black-box models.

natural-learning.cc Semenova, et al. "A Path to Simpler Models Starts With Noise.”, NeurlPS 2023




OK, but if we exclude black-box, what options do we have!

* Logistic Regression
— Good level of interpretability and explainability

— No built-in mechanism to deal with noisy features, curse of dimensionality, and
multicollinearity

—> Poor performance with high-dimensional datasets

* Decision Trees
— One of the most favored options when it comes to interpretability and explainability
— Robust against the curse of dimensionality, irrelevant features, and noisy samples

— Decision Trees are transparent, but are they explainable and interpretable?
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Limited Explainability of Decision Trees
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Can a universal rule explain the decisions for these people?

Opposed to Logistic regression, decision trees cannot provide a global explanation for the decisions.

Local explanations have a limited value if they cannot be generalized!
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Limited Interpretability of Decision Trees
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For each decision, different combinations of features are used.
It is impossible to infer the actual contribution of features at the global level.
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Analogy in Law

We don't have numerous versions of laws tailored to different individuals; rather,
there exists a single universal law that applies to everyone.

- - Person 2
-
Person 2 Person |
Person |
Logistic Regression is able to Decision Tree is unable to
provide a fair explanation provide a fair explanation
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Underlying Philosophy of Decision Trees

Aristotle
(384-322 B.C))

* The challenges associated with decision trees stem from their underlying philosophy,
which is rooted in Aristotle's categorization theory

—Humans use rule-based explanations to categorize concepts.

* Extensive Research in cognitive psychology in 1970s indicated shortcomings in this
model, suggesting that people likely do not rely on rule-based definitions when
categorizing objects.
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Natural Categories (Prototype Theory) &z

Eleanor Rosch
Professor of Psychology,
University of California,
Berkeley

* People categorize objects and concepts based on their similarity to a prototype

Furniture Prototype Electronics Prototype

More Object

Similar @ Less similar >

Image Source: https:/slideplayer.com/slide/9817067/ Image Source: https://facts.net/who-invented-color-tv/

natural-learning cc Rosch, Eleanor H. "Natural categories." Cognitive psychology 4.3 (1973): 328-350. 5




Characteristics of Prototype (1): Typicality

* Prototype is the most typical or central example of a category

Furniture Category

Chair is a prototype
for Furniture Category

Image Source: https://www.slideserve.com/louise/psy-369-psycholinguistics
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Characteristics of Prototype (2): Core Features

Top e

* Core features: central features of the
prototype that are typically shared by most, if
not all, instances within the category and are
necessary for distinguishing the category
from other categories.

* Saliency Features: prominent within a
category but not necessary for distinguishing
the category from other categories.

* Peripheral features: not essential or central to
identity of a category
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Characteristics of Prototype (3): Generalizability

* Features of a prototype should be generalizable to other members of the
category, even if those members differ in some respects from the prototype itself

Image Source: mecox.com
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Characteristics of Prototype (4): Flexibility

* Prototypes are not fixed entities; they can change based on new experiences.

Prototypes for Audio Recording

1877 1965 2001

Source: https://www.youtube.com/watchlapp=desktop&v=5PI2rsLhhwQ
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Translation to Machine Learning Language

Prototype Theory | Translation to Machine Learning Language

Typicality Each class is represented by only one single prototype
Core Features Prototypes have sparse features

Generalizability Prototype features are generalizable to samples of class
Flexibility Learning prototypes is an incremental process

Furniture Prototype S Electronics Prototype Classiﬁcation Rule

More

&Smar Q Less similar
e
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If the test sample is closer to class 0’s
prototype than class |I’s prototype, it is
classified as 0; otherwise, it is classified

as |.
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Models that are called prototype-based

SupportVector Machines (SVM)

Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. "A
training algorithm for optimal margin classifiers." Proceedings of the fifth
annual workshop on Computational learning theory. 1992.

Popular in Machine Learning

Nearest Centroid Classifier (NCC)

Prototype Selection (PS)
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Manning, Christopher; Raghavan, Prabhakar; Schiitze,
Hinrich (2008). "Vector space

classification”. Introduction to Information Retrieval.
Cambridge University Press.

Popular in information retrieval

Jacob Bien and Robert Tibshirani. Prototype
selection for interpretable classification. arXiv
preprint arXiv:1202.5933, 2012.
Unsupervised discovery of
multiple prototypes from classes
(not a direct classifier, a pre-
processing method)

21




Do they match the properties mentioned in prototype theory!

Prototype Theory | Translation to Machine Learning Language

Typicality Each class is represented by only one single prototype X v X
Core Features Prototypes have sparse features X X X
Generalizability Prototype features are generalizable to samples of class X X X
Flexibility Learning prototypes is an incremental process X X X

* Unfortunately, the term “prototype” is misused in machine learning to refer to “exemplar” methods.

* This can justify why there is no authentic implementation of prototype theory in machine learning.
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Can we build a Classifier based on Prototype Theory?

= According to prototype theory, our prototypes of interest should be:

= A pair of samples (One sample from class 0 and one sample from class |)

" We should be able to correctly classify all (or the majority of) samples based on
the following rule:

= |f the test sample is closer to class O’s prototype than class |I’s prototype, it is classified as 0;
otherwise, it is classified as 1.

* We don’t know what are the core features of the prototypes, but we know that they
are the most generalizable and the sparsest among all samples.
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Brute-Force Approach: Naive Prototype Classifier
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We can define this
classification task as a pure
cross-validation problem.

We test all possible pairs of
samples from 0 and | classes,
and with all subsets of features
(from length | to p) to see
which one generalizes best to
all samples: X is closer to O’s
prototype than |’s prototype,
labeled 0 otherwise |

We pick the pair with the
lowest error and number of
features.

|F|=1
(X1,X3,F1)
(X1,X4,F1)
(X2,X3,FI)
(X2,X4,F1)

(X1,X3,F2)
(X1,X4,F2)
(X2,X3,F2)
(X2,X4,F2)

(X1,X3,F3)
(X1,X4,F3)
(X2,X3,F3)
(X2,X4,F3)

(X1,X3,F4)
(X1,X4,F4)
(X2,X3,F4)
(X2,X4,F4)

|F|=2
(X1,X3,F1,F2) (XI,X3,F2,F4)
(X1,X4,F1,F2) (XI,X4,F2,F4)
(X2,X3,F1,F2) (X2,X3,F2,F4)
(X2,X4,F1,F2) (X2,X4,F2,F4)

(X1,X3,F1,F3) (XI,X3,F3,F4)
(X1,X4,F1,F3) (XI,X4,F3,F4)
(X2,X3,F1,F3) (X2,X3,F3,F4)
(X2,X4,F1,F3) (X2,X4,F3,F4)

(X1,X3,F1,F4)
(X1,X4,F1,F4)
(X2,X3,F1,F4)
(X2,X4,F1,F4)

(X1,X3,F2,F3)
(X1,X4,F2,F3)
(X2,X3,F2,F3)
(X2,X4,F2,F3)

|F|=3
(X1,X3, F1,F2,F3}
(X1,X4, F1,F2,F3)
(X2,X3, F1,F2,F3)
(X2,X4, F1,F2,F3)

(X1,X3, FI,F2,F4)
(X1,X4, FI,F2,F4)
(X2,X3, FI,F2,F4)
(X2,X4, FI,F2,F4)

(X1,X3, FI,F3,F4)
(X1,X4, FI,F3,F4)
(X2,X3, F1,F3,F4)
(X2,X4, F1,F3,F4)

(X1,X3, F2,F3,F4}
(X1,X4, F2,F3,F4)
(X2,X3, F2,F3,F4)
(X2,X4, F2,F3,F4)

|F|=4
(X1,X3, FI,F2,F3,F4}
(X1,X4, FI,F2,F3,F4)
(X2,X3, FI,F2,F3,F4)
(X2,X4, FI,F2,F3,F4)

Train Dataset

FI. F2 F3 F4 y
Xl 0 02505 0750

X2 0.75 05 025 |
X3 | |
X4 025025 | O

0.750.25 |



MATLAB Code: Naive Prototype Classifier on iris dataset

function Mdl=NaivePrototype(X_train,y train) Clear
load fisheriris
set = l:size(X_train,?); . .
subsets = cell(l, length(set)); y=grp21dx (SpeCleS) =17
for i = l:length(set)
subsets{i} = nchoosek(set, i); X=meaS;
end . .
idn=find(y_train==0); lds:flnd (y== I == ) ’
idp=find(y train==1); . > .
. - y=y (ids);
for i=1:numel (subsets) = J . .
for j=l:size(subsets{i},l) X X (lds 4 .) ’
sfids=subsets{i}(j,:); [N,M]=Size (X) ’
for s=l:size(X_train,!)
curr_y=y train(s); rng ( ) ;
if curr_y== . .
nn_neg=knnsearch(X_train(idn,sfids),X train(s,sfids),'K',2); lndl ces = randperm (N) ’
nn_neg=nn_neg ( )
nn_neg=idn (nn_neg) ; numTestSamples = round( * N);
nn_pos=knnsearch(X_train(idp,sfids),X train(s,sfids),'K',1); tralnIdX -— indices (DumTeStSam les_'_ . ) .
nn_pos=idp(nn_pos) ; - P * ’
else = 1 1 . .
nn_neg=knnsearch(X_train(idn,sfids),X train(s,sfids),'K',1); teStIdX lndlces ( .numTeStsampleS) ’
nn_neg=idn (nn_neg) ; X train = X(trainIdx, :);
nn_pos=knnsearch(X_train(idp,sfids),X train(s,sfids),'K',2); _
nn_pos=nn_pos (end) ; X test = X(testIdx, :);
nn_pos=idp (nn_pos) ; — . .
end y train = y(trainIdx, :);
yt=y_train([nn_neg,nn_pos]); - - . .
yhat=yt (knnsearch (X_train([nn_neg,nn _pos],sfids),X train(:,sfids), 'K',1)); y_teSt - y (teStIdX 14 . ) 14
k=k+1;
err (k) = sum(yhat~=y train)/numel (y_train);
svs(k,1)=nn_neg; = 1 1 1 .
e T Mdl=NaivePrototype (X train,y train);
 Po-features{k}=sfida; y test NP=Mdl.My (knnsearch(Mdl.MX,X test(:,Mdl.Protot
en - - -
end ypeFeaturelIDs), 'K',1));
end
[minerr,bestk]=min (err) ; acc test=sum(y test NP==y test)/numel(y test);
Mdl.PrototypeSampleIDs=svs (bestk,1:2); - - - - -
Mdl.PrototypeFeaturelIDs=nn_features{bestk};
Mdl.Error=minerr;
Mdl.Subsets=subsets;
Mdl.L=0;
Mdl.MX=X_ train(Mdl.PrototypeSampleIDs,Mdl.PrototypeFeaturelDs)
Mdl.My=y_ train(svs(bestk,1:2));
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Sample ID sepal length sepal width petal length petal width
5

o : S =08 op
100% Accuracy with Extreme Sparsity (iris data) AR
* TestAccuracy = 100% S

I PrototypeSamplelDs [5,6] S

|| PrototypeFeaturelDs 3 R A

* Prototype for Setosa (Sample 5): H Error 0 » mow oW
— Petal length=1.40 L subsets e S s s e

* Prototype for Versicolour (Sample 6) : [ mx [1.4000;3.3000] ooy onoo& b

38 6.7 3.1 44 1.4

— Petal length= 3.30 HMy o] SR S R
« Simple Rule for Classification: If Petal Length of test sample is e
closer to Sample 5’s petal length (1.4) than Sample 6’s petal length S T R
(3.3), the prediction is Setosa (0), otherwise it is Versicolour(l). A T
* Test this rule yourself. It works for all samples! (both train & test)
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But why nobody has ever tried this classifier before!?

Pat Langley
Stanford University

* “Most courses in Machine Learning ignore older methods with links to cognitive
psychology. Few graduate students read papers more than ten years old, so they are
not exposed to the classic literature”, Pat Langley

. Langley, Pat. "The computational gauntlet of human-like learning." AAAI 2022.
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Weak Connection between ML and Cognitive Psychology

K-Nearest Neighbors resembles exemplar theory, but they are developed independently without any connection between them

Cognitive Psychology 1975 1951 Statistics

* Exemplar Theory of Categorization

* Individuals categorize objects or events
based on their previous experiences with
specific examples, or exemplars, of
those categories.

Rosch, E. (1975). "Cognitive Representations of
Semantic Categories." Journal of Experimental
Psychology: General, 104(3), 192-233.
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K-Nearest Neighbors
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Fix, E., & Hodges Jr,J. L. (1951). "Discriminatory
Analysis. Nonparametric Discrimination:
Consistency Properties." Project 21-49-004, U.S.
Air Force School of Aviation Medicine



Naive Prototype is not a practical classifier!

* Inherently Interpretable and Explainable
* Inherently robust to label noise (noisy samples)
* It is not scalable: 0(n32P)
* Itis vulnerable to the curse of dimensionality
—Nearest neighbors become meaningless in higher dimensions
* It is not robust to noisy features

* Prototype Theory does not offer any solution for the above problems.

* These problem only arises in computers = needs a computing solution

natural-learning.cc 29




Scalability

* The number of ways to choose k features from a set of p features (p=total number of features) without
regard to the order of selection:

(1)-ot
k (p—Fk)!k!

* Our sparse features can be in length of k=[1,2,..,p]:

p _ — p _
(p— 1)!11 + (p— 2)121 Tt 1r(p o1 = = 2 2 2>+ |lfork=p—> 2 1
* Every pair of + samples and — samples are potential candidates: Cost of Pair of samples:n™ n™= O(nz)

* We also need to cross-validate all combinations of sample pairs and feature subsets: O(2n)

* Total time Complexity = 0(n32P)
— Example (only in terms of p): p=784 (MNIST data) = 2784-1 = [023¢ > number of atoms in universe (10%)
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Required Properties

Prototype Theory | Machine Learning

Typicality Each class is represented by only one single prototype
Core Features Prototypes have sparse features
Generalizability Prototype features are generalizable to samples of class
Flexibility Learning prototypes is an incremental process
Robustness to noisy labels
Interpretability (what features are used in the decision?)
Explainability (clear trajectory from input to output)

Robustness to curse of dimensionality

X 0 X N XX X X

Robustness to noisy features

Computationally scalable /O

We need to solve these issues to build an authentic and practical

replica of prototype theory for machine learning

< x4 x < x % X <

ol x 0 X< xXx X
‘><><><‘\ AR R




Additionally, we want a natural solution

* Hyperparameter-free: Nature does not use hyperparameters

* Optimization-free: Optimization does not exist in nature
—Engineering tricks made by humans

—Nature instead uses evolution, natural selection, and self-organization

* Purely based on Nearest neighbor

—Brain runs a Nearest neighbor algorithm in an efficient way
* See the evidence in the next slide
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Bypassing curse of dimensionality with nature’s algorithm ?
Fruit Fly

* Naive prototype classifier is dependent to nearest neighbor search. In higher
dimensions , nearest neighbors become irrelevant, because relevant samples become
dissimilar, and irrelevant samples become similar.

* Prototype theory does not explain how humans find the nearest neighbor, but
recent evidence has been found in fruit fly’s brain (Dasgupta , et. al, 2017)

— Fruit fly’s brain uses a version of locality-sensitive-Hashing (LSH) algorithm
for nearest neighbor search.

Dasgupta, Sanjoy, Charles F. Stevens, and Saket Navlakha. "A neural algorithm for a
natural-learning.cc fundamental computing problem." Science 358.6364 (2017): 793-796.




Bypassing curse of dimensionality via LSH

Piotr Indyk  Rajeev Motwani

* LSH is an efficient solution to nearest-neighbor search by mapping high-
dimensional data points into a lower-dimensional space in such a way that
similar points are more likely to be hashed into the same bucket with high

probability.

* LSH, focuses on a subset of potential candidates, thereby providing both
computational efficiency and robustness to the curse of dimensionality.

* So, if we use LSH for our nearest neighbor search, we have already solved the first
problem!

[1] Indyk, Piotr, and Rajeev Motwani. "Approximate nearest neighbors: towards removing the curse of
dimensionality." Proceedmgs of the thirtieth annual ACM symposium on Theory of computing. 1998.

. [2] Charikar, Moses S. "Similarity estimation techniques from rounding algorithms." Proceedings of the
natural-learnlng.cc thiry-fourth annual ACM symposium on Theory of computing. 2002.




Properties of Interest

Prototype Theory | Machine Learning

Typicality
Core Features
Generalizability

Flexibility

natural-learning.cc

Each class is represented by only one single prototype
Prototypes have sparse features

Prototype features are generalizable to samples of class
Learning prototypes is an incremental process
Robustness to noisy labels

Interpretability (what features are used in the decision?)
Explainability (reasoning the decision)

Robustness to curse of dimensionality

Robustness to noisy features

kxxox\xxx
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Computationally scalable

[—

We have less problems to solve now



Attacking computational scalability with respect to n

* To solve this, we need to time travel to 1995, take some lessons from Soft-Margin SVM
and return back.

Image source: stock.adobe.com

i Cortes, C., & Vapnik,V. (1995). Support-vector networks.
natural-learning.cc Machine Learning, 20(3), 273-297.




Hard Margin SVM vs. Soft Margin SVM

Hard-Margin (Impractical)

No samples from either of the classes are
~ allowed to appear in the margin space
Never converges in real-life datasets

natural-learning.cc

Soft-Margin (Practical)

Samples from both classes are allowed
~ to appear in the margin space (with
some penalty)




Re-designing SVM with typicality principle of prototype theory

* Prototype theory suggests that only one support vector
exists for each class. This assumption can simplify the problem
of finding support vectors to a regular cross-validation.

e A can serve as an ideal pivot to find support vectors B and C

* The Nearest Neighbor of A from its own class is B, and its
nearest neighbor from the other class is C.

* If we put A as a pivot, it shows us the path to reach support
vectors B and C.

* Since B and C are actual support vectors, if we cross-
validate their generalizability, they pass the test!

* So, margin violation samples are a very informative source for
finding support vectors without the need for optimization!

natural-learning.cc




Re-designing SVM with typicality principle of prototype theory

* What about other regular samples?

* The nearest neighbor of D is E from its class and C from
the other class. Again, C can be found as a support vector,
but E is a little far from the actual support vector B.

* In cross-validation, it is likely that the decision boundary
will not generalize as well as the decision boundary
between B and C, so it automatically will be beaten by
actual support vectors (B and C) suggested by A as a
pivot.
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Fuzzy decision boundary vs. SVM’s linear boundary

" We can now enjoy a fuzzy decision
boundary, which gives us more flexibility

= Removes margin width as a hyperparameter
" We keep going hyperparameter-free X, C.

=@
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Computational benefit

* Instead of testing all pairs of samples, we can limit our search to triplets
|. Sample
2. The nearest neighbor from its class (support vector candidate |)

3. The nearest neighbor from the other class (support vector candidate 2)
* This reduces the complexity of search in terms of n from 0(n?) to O(n)

* Cross-validation costs only O(2n) due to relaxed assumption of prototype theory
— Distance of all samples to only 2 support vectors

natural-learning.cc




Intuitive Example of Triplets

Sphynx cat
* Sphynx cat is a distinctive cat breed o
often confused for a dog because of its

unique physical characteristics.

—Sphynx cat is a margin violation sample

*., Dog Prototype

* Triplets helps us gain efficiency not
only in terms of “n” but also in terms
of “p”. How!?

Cat Prototype

Example of a triplet

natural-learning.cc .




Applying “Generalizability Principle”

non-core feature candidate

080 0.60 0

Nearest Neighbor from
the opposite class (dog)
Dog prototype candidate

t0.20 t o.10 * 0
Pivot (Cat) =2 () 60 = () 50 <0 (0
Sphynx .. ..
Nearest Neighbor from its v 0-05 v 0.01 l !
own class (Cat) 0.55 0.5 I I
Cat prototype Candidate
Size and Weight can still be is a candidate for a

non-core feature: it makes pivot
(cat) seem closer to the prototype
of the opposite class (dog), the class
it does not belong to.

the core features of prototypes
because they make a cat seem
closer to a cat as expected.

natural-learning.cc




Applying “Generalizability Principle”

Feature Matrix with censored non-core features

* Test Generalization of All samples derived -m

without feature “Mustache Dog | 05 0.5
0.4 0.1
0.3 0.2
Prototype Candidates | nominated by Sample | Dog 4 0.80 0.60
removing non-core candidate Cat |
| size | Weight 00 %20
— Prediction: Cat 2 0.8 0.9
@ 0.5 05 Dog . |
= Becauseitis  Cat 3 0.5 0.8
m{ 06 05 closer to . .
f dog Cat 4 0.55 0.51

natural-learning.cc




Applying “Generalizability Principle”

Feature Matrix with censored non-core features

* Test Generalization of All samples derived -m

without feature “Mustache Dog | 05 0.5

Dog 2 0.4 0.1

0.3 0.2

Prototype Candidates | nominated by Sample | after og 4 0.80 0.60
removing non-core candidate Cat |

m 0.60 0.50

- : Cat 2 0.8 0.9

- = Cat 3 0.5 0.8

'”, 0.6 0.5
| Cat 4 0.55 0.5

natural-learning.cc




Applying “Generalizability Principle”

Feature Matrix with censored non-core features

* Test Generalization of All samples derived -m

without feature “Mustache Dog | 0.5 0.5
Dog 2 0.4 0.1

* Error =0.125
Dog 3 0.3 0.2
Prototype Candidates | nominated by Sample | after Dog 4 0.80 0.60

removing non-core candidate

‘ n r
V.J

q"% 05 Cat 2 0.8 0.9
- Cat 3 0.5 0.8

‘ 005 005
" : 4 055 051

natural-learning.cc




Applying “Generalizability Principle”

* The next pivot nominates two different
samples with different non-core features.

e Error =0.375

Prototype Candidates 2 nominated by Sample 2 after
removing non-core candidate

-‘ﬁ"& BT mm
A :u.

é

0.5

natural-learning.cc

0

Feature Matrix with censored non-core features

Dog |
Dog 2
Dog 3
Dog 4
Cat |

Cat 2
Cat 3

Cat 4

0.5

0.4

0.3
0.80
0.60
0.8

0.5

0.55

o O o o



Applying “Generalizability Principle”

Feature Matrix with censored non-core features

* The next pivot nominates two different -m

samples with different non-core features. Dog | 0.5
Dog 2 0.4
* Error =0.25
Dog 3 0.3
Prototype Candidates n nominated by Sample n after Dog 4 0.80
removing non-core candidate
Cat | 0.60
Cat 2 0.8
Cat 3 0.5
Cat 4 0.55

natural-learning.cc




Applying “Generalizability Principle”

Removing Mustache globally from the feature matrix

The minimum Generalization Error is obtained for -m Weight
the Removal of “Mustache’ (Error = 0.125)

Dog | 0.5 0.5

| size | Weight Dog 2 0.4 0.1
0 080 06 Dog 3 0.3 02
055 05 Dog 4 0.80 0.60

Cat | 0.60 0.50

Cat 2 0.8 0.9

Cat 3 0.5 0.8

Cat 4 0.55 0.51

natural-learning.cc




Intuitive Example (1)

No more pruning can be We can’t turn this complex
object into a simpler
prototype in one step
without having a feedback
after pruning part of
complexity

—

W& remmone tihits paant, bunids
wisst et off cane: fhmtunes, s
it deeeruizgdnediljzhuvelle
thus wecdjscaid premingning. Basic Level (Sparse Prototype)
Non-prototype Example Core Feature : Circle

natural-learning.cc 50




Intuitive Example (2)

Iteration #|
Iteration #2
Iteration #3
Iteration #4
Iteration #5

Stop

natural-learning.cc

Top R

Back
Post

Spindle

Ear

\ Front Legs

“You know you’ve achieved
perfection, not when you have
nothing more to add, but when
you have nothing to take
away’ (Saint-Exupery, Airman’s
Odyssey, 1943)

Saint-Exupery, 1943

51



Analogy in Academic Writing

2000 characters limit in conference paper submission

Iteration #1” You write your first version: 5000 characters

Iteration #2: Remove some non-core information: 3500 characters

Iteration #10: Remove non-core information: 2000 characters

natural-learning.cc




Iteration #2

BE® non-core feature
candidate at iteration #2

T S weigh

NEW Nearest Neighbor
from Dog Class at

0.80  0.45
fo

iteration# 2 . 0 ,
s (0 p0s0.60 050 014005
- Nearest Neighbor “ b v 0.05 1

from Cat Class at 'y 0.55 O 40

iteration# 2

The triplet space of Sphynx cat has new neighbors because we are in a new feature
space and have a better similarity relevance due to removed non-core (noisy)
features. We also have purer classes.

natural-learning.cc




“Flexibility Principle”

— As it can be seen, prototypes can change during each iteration.

* Flexibility condition of prototype theory = Incremental property

natural-learning.cc

Characteristics of Prototype (4): Flexibility

* Prototypes are not fixed entities; they can change based on new experiences.

Prototypes for Audio Recording




Applying “Typicality Principle”

* If we cannot prune more features, that Final Prototype “

means that we have reached the core
features of prototypes

0.80

* After removing weight, Size becomes the
core feature.

0.55

* Those prototype candidates that generalize
better with the “Size” feature as the core
feature become our final prototype
samples

natural-learning.cc

Generalization Error = 0.125




Massive time complexity reduction for feature search

* By iterative pruning of non-core features, we naturally reach to the core features of
prototypes in a very efficient way

* So, with this method, we no longer need to test all subsets of features.

— Reducing complexity for feature search from 0(2P) to O(pL)
* Where L is the number of pruning iterations (e.g., for MNIST O vs. |,L=10)

natural-learning.cc




Problem Solved

* Scalable
— Reducing Time Complexity from 0(n32P) to O(n?pL) , where L is number pruning Iterations.
— The algorithm design allows high parallelization with GPUs.
* Each pruning/validation task can be parallelized or distributed for each sample independently.

* Robust to Curse of Dimensionality
— Thanks to LSH

* Robustness to Noisy Features
— By lIterative pruning of non-core features, features of sparse prototypes shows up naturally

—No hyperparameter required for number of pruning iterations

* Stopping criteria: when no more features can be pruned

natural-learning.cc




Problem Solved

Prototype Theory | Machine Learning

Typicality Each class is represented by only one single prototype
Core Features Prototypes have sparse features

Generalizability Prototype features are generalizable to samples of class
Flexibility Learning prototypes is an incremental process

Robustness to noisy labels
Interpretability (what features are used in the decision?)
Explainability (reasoning the decision)

Robustness to curse of dimensionality

Robustness to noisy features

X X L 0 XN XX X X

A X X 8 X X X X <
O X % 0 X< X XX X
SN XX RN XX

Computationally scalable

natural-learning.cc




This new algorithm is now called “Natural Learning (NL)”

Prototype Theory | Machine Learning

Typicality Each class is represented by only one single prototype
Core Features Prototypes have sparse features

Generalizability Prototype features are generalizable to samples of class
Flexibility Learning prototypes is an incremental process

Robustness to noisy labels
Interpretability (what features are used in the decision?)
Explainability (reasoning the decision)

Robustness to curse of dimensionality

Robustness to noisy features

X X L 0 XN XX X X

A X X 8 X< X X X<
O X % 0 X< X XX X
SN XX RN XX

Computationally scalable

After Rosch’s 1973 paper “Natural Categorizes”

natural-learning cc Rosch, Eleanor H. "Natural categories." Cognitive psychology 4.3 (1973): 328-350.




Training Algorithm in 20 lines!

Algorithm 1 NLTrain

Hyperparameter-free

Self-explainable Algorithm

Code available in MATLAB, Python,and R

I: Input: training set (x, y) (n samples and p features), y; = {0, 1}, and features of best prototype M

2: Output: prototype samples (spest and opest ). and their labels, prototype features M

3: if M is null then

40 M+ {1,2, ... p} Minitialization of prototype features

5: end if

6: x=ux(:,M) // Copy of x with features in M

T: €pest $— OO Hinitialization of best error. Allowing NL to learn better prototypes at each iteration.

8: for each sample 7 in = do

9: s < index of x;’s nearest neighbor from same class using LSH //prototype sample candidate
10: o <+ index of x;’s nearest neighbor from opposite class using LSH //prototype sample candidate
11: ' < indices of features in M that make z; closer to x5 than x, // prototype features candidate
12: g < NLPredict(xs,x0,Ys, Yo, C,z) /test the generalization of prototype candidate

130 e Y (y#19)

14: if ¢ < epest & [C'| > 1 then

15: (Spest, obe%t) — (s,0) /4 Bc’.sf prototype samples Algorithm 2 NLPredict

16: Chest — C //Best prototype features

17: Ehest < € //Best error so far !

18 end if ‘ 2: Output: y (Predicted labels)
19: end for 3: e .,
20: if |Chese| # | M| then 4 for cach sample i in « do
211 M + Chest o L S;t.';) & Dlws, e, 20)

. N ! " v f . T E=3
3%: en:i\li‘l’?Tm:m(i ¥ M) 7. if d-? < ds then
2! 8: Yi = Yo
9:  endif

natural-learning.cc

10: end for

. Input: data (x), prototype samples (xo and xs) and corresponding labels (7o and ys) and features (M)

x4 x(:, M) /I copy of x with prototype features (M or C})

//Distance of example to prototype samples s and o




lllustrative Example: Iteration # |

| — Feature Matrix 4- Prune features that make 5- Prototype Candidates 6- Cross Validation
Fl. F2 F3 F4 y Pivot closer to NNO comparing NNS D(S0) D(SI) ¥
Xl 0 025 05 0.75 0 FI' F2 [ F3 F4 Xl 035 090 0 |7->3election of
—1— NNO X4 025 025) 1 | 0 X4 15 000 1 | 9 »  fpeat
X4 025025 | 0 | ; Q carures
Fl F2 F3  F4 PEOBEH v Za  pEEE
2.BestError = inf F2 F3 F4 Xl 0.00 094 O S E
] NNS XI 0 [025] 05 075 » so 02505 0.75» X2 0.43 103 0 o S SO 0.25 |
NNS NNO Pivo . ) a ™ < ko
X2 X4 X Pivot X2 0.75 0.5 0.25 I S| | 075 0.25 X3 094 0.00 |
XI X3 X2 S —— T D(s0) DSI)  § P .
X4 X2 X3 NS x4 (025 02: HEEEEEE F3 F4 XI 035 090 o Mmatrix by keeping
X3 Xl X4 ' ' B 0 0251 ®» X2 0.00 125 o features of the best
3N— For e;ch s;]abmple., finakhe  NnO %2 075 05 | 005 || SI | [0 SR N8 GG P YP
carest helghoor via  \ FIlF2 | F3 | F4 D(s0) D(SI) ¥ 9. Repeat 1-8.
Locality-Sensitive Hashi X1 0.00 0 0
NNS X3 | | 0.75 0.25 F3 F4 : 56 Stob when best
from the same class (NNS) ) » » X2 035 090 0 P
. Pivot X4 0.25 0.25 I 0 SO 10.5 0.75 f d
and the opposite class (NNO) X3 056 0.00 | eatures do not
NNO XI 0 02505 [075] S| [0.75/0.25 — T T
: : change anymore.

natural-learning.cc ¢!




lllustrative Example: Iteration # 2

| — Feature Matrix

F3 F4 y
X1 0.5 0.75 0
X2 025 | O
X3 0.75 0.25 |
X4 | 0 |

2. BestError = inf

\ 4

natural-learning.cc




Geometric View of Decision Boundaries

Iteration #1

CV #1 Error=0/
NN-S Pivot |

Feature 2
2

Feature

Feature | has the same

distance to pivot’s NN-
S and NN-O - Non-
core pruning Candidate

natural-learning.cc

Active Features:[1,2]

CV #2 Error=I

Pivot 2%, NN-S

*
*
*
*
*
.
*
.
*
*
*
*
NN-O*

Feature |

Both features are
relevant, so no
pruning candidate

CV #3 Error=I

CV #4 Error=0

NN-O

Feature 2

NN-O

Pivot 3

Feature 2

NN-S

Feattre | F

Both features have the
same distance to pivot’s

NN-S and NN-O -
cross-validation will not

e |

Iteration #2
na Error=0 v
BQ Error=0

n B Q Error=I

4 BQ Error=0

Best Prototype’s features: [2] == Active Features = [2]

Best Prototype Samples: [2,3]

Feature | has the same
distance to pivot’s NN-
S and NN-O - Non-

core pruning Candidate

be performed

Final Prototype samples: [2,3]
Final Prototype features: [2]



MNIST Dataset (0 vs. |) — Iteration |

* Iteration=|
* [teration=|
* [teration=|
* [teration=|
* [teration=|
* [teration=|
* [teration=|

* |teration=|

PivotSample=1/12665 PrototypeCandidate=[5845,8205], NumFeatures=166/784, Error=0.0756
PivotSample=4/12665 PrototypeCandidate=[844,10217], NumFeatures=153/784, Error=0.0360
PivotSample=21/12665 PrototypeCandidate=[3840, | 859], NumFeatures=150/784, Error=0.0258
PivotSample=76/12665 PrototypeCandidate=[815,| 1478], NumFeatures=148/784, Error=0.0188
PivotSample=208/12665 PrototypeCandidate=[3175,7938], NumFeatures=122/784, Error=0.0121
PivotSample=245/12665 PrototypeCandidate=[4403,7780], NumFeatures=110/784, Error=0.01 1 4
PivotSample=402/12665 PrototypeCandidate=[513,7078], NumFeatures=125/784, Error=0.008 |
PivotSample=2062/12665 PrototypeCandidate=[5011,7780], NumFeatures=165/784, Error=0.0046

This sample likely is a margin violation sample
that guides us towards good support vectors
(e.g., A in our SVM example)

natural-learning.cc




MNIST Dataset (0 vs. |) — Iteration 2

* lIteration=2 PivotSample=1/12665 PrototypeCandidate=[62,8205], NumFeatures=88/165, Error=0.0882

* Iteration=2 PivotSample=2/12665 PrototypeCandidate=[3652,8205], NumFeatures=86/165, Error=0.0853

* Iteration=2 PivotSample=3/12665 PrototypeCandidate=[4167,10217], NumFeatures=93/165, Error=0.0791

* Iteration=2 PivotSample=5/12665 PrototypeCandidate=[5396,9876], NumFeatures=99/165, Error=0.0711|

* Iteration=2 PivotSample=14/12665 PrototypeCandidate=[3567,9987], NumFeatures=64/165, Error=0.0388

* Iteration=2 PivotSample=16/12665 PrototypeCandidate=[4400,9719], NumFeatures=88/165, Error=0.0126

* Iteration=2 PivotSample=124/12665 PrototypeCandidate=[3943,6696], NumFeatures=91/165, Error=0.0066

* Iteration=2 PivotSample=6228/12665 PrototypeCandidate=[6065,171 ], NumFeatures=107/165, Error=0.0066
* Iteration=2 PivotSample=7297/12665 PrototypeCandidate=[6447,5814], NumFeatures=88/165, Error=0.0063
* Iteration=2 PivotSample=8095/12665 PrototypeCandidate=[6153,261 ], NumFeatures=76/165, Error=0.006 |

1

Flexibility principle: support vectors are now
changed! They are sparser!

natural-learning.cc




MNIST Dataset (0 vs. |) — Iteration 3

* Iteration=3 PivotSample=1/12665 PrototypeCandidate=[1257,8183], NumFeatures=54/76, Error=0.0695

* Iteration=3 PivotSample=17/12665 PrototypeCandidate=[4740,9332], NumFeatures=58/76, Error=0.047 |

* Iteration=3 PivotSample=27/12665 PrototypeCandidate=[2547,7622], NumFeatures=41/76, Error=0.0385

* Iteration=3 PivotSample=31/12665 PrototypeCandidate=[3388,793 1], NumFeatures=28/76, Error=0.0165

* Iteration=3 PivotSample=345/12665 PrototypeCandidate=[5305,7160], NumFeatures=47/76, Error=0.0099

* Iteration=3 PivotSample=779/12665 PrototypeCandidate=[5053,7160], NumFeatures=53/76, Error=0.0099

* Iteration=3 PivotSample=943/12665 PrototypeCandidate=[1627,9332], NumFeatures=41/76, Error=0.0087

* Iteration=3 PivotSample=1203/12665 PrototypeCandidate=[3622,7996], NumFeatures=31/76, Error=0.0053

natural-learning.cc




MNIST Dataset (0 vs. |) — Iteration 4

* Iteration=4 PivotSample=1/12665 PrototypeCandidate=[2068,9477], NumFeatures=17/31, Error=0.1368

* Iteration=4 PivotSample=2/12665 PrototypeCandidate=[5840,9477], NumFeatures=15/31, Error=0.1268

* Iteration=4 PivotSample=3/12665 PrototypeCandidate=[3317,9287], NumFeatures=21/31, Error=0.0582

* Iteration=4 PivotSample=5/12665 PrototypeCandidate=[5698,8702], NumFeatures=26/31, Error=0.051 |

* Iteration=4 PivotSample=8/12665 PrototypeCandidate=[2419,10601], NumFeatures=12/31, Error=0.0250

* Iteration=4 PivotSample=12/12665 PrototypeCandidate=[735,9308], NumFeatures=21/31, Error=0.0207

* Iteration=4 PivotSample=26/12665 PrototypeCandidate=[2867,10238], NumFeatures=14/31, Error=0.0115
* Iteration=4 PivotSample=61/12665 PrototypeCandidate=[571,| 298], NumFeatures=22/31, Error=0.0073

* Iteration=4 PivotSample=989/12665 PrototypeCandidate=[4792,12441], NumFeatures=20/31, Error=0.007 |
* Iteration=4 PivotSample=2860/12665 PrototypeCandidate=[3951,7869], NumFeatures=16/31, Error=0.0060
* Iteration=4 PivotSample=3185/12665 PrototypeCandidate=[5428,8945], NumFeatures=18/31, Error=0.0057
* Iteration=4 PivotSample=6783/12665 PrototypeCandidate=[10423,4083], NumFeatures=24/31, Error=0.0050
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MNIST Dataset (0 vs. |) — Iteration 5

* lIteration=5 PivotSample=1/12665 PrototypeCandidate=[5836,1 1670], NumFeatures=15/24, Error=0.1375

* Iteration=>5 PivotSample=2/12665 PrototypeCandidate=[2259,9376], NumFeatures=13/24, Error=0.0747

* Iteration=5 PivotSample=4/12665 PrototypeCandidate=[3753,10240], NumFeatures=20/24, Error=0.0168

* Iteration=5 PivotSample=65/12665 PrototypeCandidate=[119,10240], NumFeatures=15/24, Error=0.0160

* Iteration=>5 PivotSample=66/12665 PrototypeCandidate=[4880,10996], NumFeatures=16/24, Error=0.01 14

* Iteration=>5 PivotSample=305/12665 PrototypeCandidate=[4219,10240], NumFeatures=18/24, Error=0.01 14

* Iteration=5 PivotSample=605/12665 PrototypeCandidate=[5486,8936], NumFeatures=16/24, Error=0.0107

* Iteration=>5 PivotSample=749/12665 PrototypeCandidate=[2746,6051], NumFeatures=10/24, Error=0.0066

* Iteration=>5 PivotSample=2746/12665 PrototypeCandidate=[749,605 1], NumFeatures=11/24, Error=0.0060

* Iteration=5 PivotSample=4083/12665 PrototypeCandidate=[3709,12086], NumFeatures=15/24, Error=0.005 |
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MNIST Dataset (0 vs. |) — Iteration 6

* lIteration=7 PivotSample=2/12665 PrototypeCandidate=[1686,7921], NumFeatures=3/10, Error=0.1171

* Iteration=6 PivotSample=1/12665 PrototypeCandidate=[5836,7622], NumFeatures=12/15, Error=0.1248

* Iteration=6 PivotSample=4/12665 PrototypeCandidate=[5751,10240], NumFeatures=13/15, Error=0.0141

* Iteration=6 PivotSample=13/12665 PrototypeCandidate=[4381,10240], NumFeatures=13/15, Error=0.0140

* Iteration=6 PivotSample=35/12665 PrototypeCandidate=[44,10240], NumFeatures=13/15, Error=0.0139

* Iteration=6 PivotSample=73/12665 PrototypeCandidate=[1694,10240], NumFeatures=13/15, Error=0.0137

* Iteration=6 PivotSample=92/12665 PrototypeCandidate=[3714,6627], NumFeatures=13/15, Error=0.0107

* Iteration=6 PivotSample=209/12665 PrototypeCandidate=[4690,7628], NumFeatures=6/15, Error=0.0098

* Iteration=6 PivotSample=1269/12665 PrototypeCandidate=[702,6121], NumFeatures=7/15, Error=0.0077

* lteration=6 PivotSample=6209/12665 PrototypeCandidate=[9503,1609], NumFeatures=10/15, Error=0.0069
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MNIST Dataset (0 vs. |) — Iteration 7

* lIteration=7 PivotSample=6/12665 PrototypeCandidate=[962,7250], NumFeatures=6/10, Error=0.0325

* Iteration=7 PivotSample=14/12665 PrototypeCandidate=[1219,7555], NumFeatures=5/10, Error=0.0308

* Iteration=7 PivotSample=249/12665 PrototypeCandidate=[2327,6577], NumFeatures=3/10, Error=0.0156

* Iteration=7 PivotSample=337/12665 PrototypeCandidate=[1950,6577], NumFeatures=3/10, Error=0.0090

* Iteration=7 PivotSample=4796/12665 PrototypeCandidate=[4300,953 1], NumFeatures=2/10, Error=0.0078

* Iteration=7 PivotSample=5883/12665 PrototypeCandidate=[4482,6577], NumFeatures=4/10, Error=0.0069

* Iteration=7 PivotSample=5995/12665 PrototypeCandidate=[10327,1609], NumFeatures=10/10, Error=0.0063
* Iteration=7 PivotSample=8335/12665 PrototypeCandidate=[9625,1609], NumFeatures=8/10, Error=0.006 |
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MNIST Dataset (0 vs. |) — Iteration 8

* Iteration=8 PivotSample=1/12665 PrototypeCandidate=[3516,7412], NumFeatures=6/8, Error=0.1 189

* Iteration=8 PivotSample=3/12665 PrototypeCandidate=[2655,5985], NumFeatures=3/8, Error=0.1169

* Iteration=8 PivotSample=6/12665 PrototypeCandidate=[962,6506], NumFeatures=7/8, Error=0.0549

* Iteration=8 PivotSample=8/12665 PrototypeCandidate=[4988,7555], NumFeatures=2/8, Error=0.0493

* Iteration=8 PivotSample=11/12665 PrototypeCandidate=[4852,7250], NumFeatures=5/8, Error=0.0264

* Iteration=8 PivotSample=38/12665 PrototypeCandidate=[2700,6506], NumFeatures=7/8, Error=0.0242

* Iteration=8 PivotSample=123/12665 PrototypeCandidate=[1809,6506], NumFeatures=6/8, Error=0.0235

* Iteration=8 PivotSample=275/12665 PrototypeCandidate=[357,7572], NumFeatures=4/8, Error=0.0159

* Iteration=8 PivotSample=1152/12665 PrototypeCandidate=[1899,7818], NumFeatures=2/8, Error=0.0120
* Iteration=8 PivotSample=1910/12665 PrototypeCandidate=[2422,1 | 1 50], NumFeatures=4/8, Error=0.0107
* Iteration=8 PivotSample=3354/12665 PrototypeCandidate=[3982,8105], NumFeatures=7/8, Error=0.0069
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MNIST Dataset (0 vs. ) — Iteration 9

* lIteration=9 PivotSample=1/12665 PrototypeCandidate=[3516,8387], NumFeatures=4/7, Error=0.1526

* Iteration=9 PivotSample=3/12665 PrototypeCandidate=[2655,8387], NumFeatures=3/7, Error=0.1225

* Iteration=9 PivotSample=6/12665 PrototypeCandidate=[962,7412], NumFeatures=3/7, Error=0.1077

* Iteration=9 PivotSample=8/12665 PrototypeCandidate=[391|,12101], NumFeatures=2/7, Error=0.0452

* Iteration=9 PivotSample=11/12665 PrototypeCandidate=[1201,7412], NumFeatures=4/7, Error=0.0449

* Iteration=9 PivotSample=22/12665 PrototypeCandidate=[2105,7555], NumFeatures=3/7, Error=0.0292

* Iteration=9 PivotSample=173/12665 PrototypeCandidate=[3694,9066], NumFeatures=3/7, Error=0.0098

* Iteration=9 PivotSample=473/12665 PrototypeCandidate=[5549,9066], NumFeatures=3/7, Error=0.0094

* Iteration=9 PivotSample=739/12665 PrototypeCandidate=[5656,9066], NumFeatures=3/7, Error=0.0069
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MNIST Dataset (0 vs. |) — Iteration 10

* lIteration=10 PivotSample=1/12665 PrototypeCandidate=[224,7622], NumFeatures=2/3, Error=0.7712

* Iteration=10 PivotSample=4/12665 PrototypeCandidate=[38,1 | 310], NumFeatures=2/3, Error=0.5754

* Iteration=10 PivotSample=9/12665 PrototypeCandidate=[10,| 13 10], NumFeatures=2/3, Error=0.5677

* Iteration=10 PivotSample=11/12665 PrototypeCandidate=[2349,7412], NumFeatures=2/3, Error=0.267 |

* Iteration=10 PivotSample=12/12665 PrototypeCandidate=[2888,| |16 14], NumFeatures=2/3, Error=0.1240
* Iteration=10 PivotSample=24/12665 PrototypeCandidate=[4712,1 1859], NumFeatures=3/3, Error=0.0827
* Iteration=10 PivotSample=53/12665 PrototypeCandidate=[5701,9740], NumFeatures=3/3, Error=0.0102
* Iteration=10 PivotSample=103/12665 PrototypeCandidate=[393,9740], NumFeatures=3/3, Error=0.0067

* Best Prototype=[Sample 393 (class 0), Sample 9740(class 1)], Best Error=0.0067, Core Features=[267 268 408]

natural-learning.cc




Visualization of Sparse Prototypes found by Natural Learning

393(Class 0) - Original Features 9740(Class 1) - Original Features

0’s prototype I’s prototype

393(Class 0) - Sparse Features by NL  9740(Class 1) - Sparse Features by NL

' o

If test :t:amples pixels 267,268, 408, Accuracy on Train : 99.33%
collectively make test example closer  Accyracy on Test: 99.48%
to 0’s prototype than I’s

prototype, it is 0, otherwise it is |

natural-learning.cc a




MNIST Dataset (0 vs. |) — Summary

Generalization Error

0.0069 0.0069 0.0069 g gpe7

0.0021
larger error The key to have

extreme sparsity is
165 .
to sacrifice small

Prototype Core Features 162 less accuracy

76

features

iterations
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MNIST Dataset (0 vs. |) — Summary

165
Prototype No more features could be

Core Features pruned = Stop
No hyperparameter is
required for the number of

iterations iterations

natural-learning.cc 76




Comparison of Properties with other classifiers

Model Local rules? Estimate Weight? Hyperparameters! Memorize Train set!
Nearest Neighbor (INN) No No No Yes

Deep Neural Networks (DNN) No Yes Yes No

Random Forest (RF) Yes No Yes No
Decision Trees (DT) Yes No Yes/No No

Logistic Regression (LR) No Yes No No

Linear discriminant Analysis (LDA) No Yes No No
SupportVector Machines (SVM) No Yes Yes No
Natural Learning (NL) No No No Only 2 Samples*

* For binary classification

natural-learning.cc




Connection of NL with other classifiers

Special case of Nearest Neighbor Classifier

— NL=Nearest Neighbor Classifier on the compressed training set with size of s x c
* s=number of classes (s=2 in binary classification)
* c=dimension of core features (c<<p)

Special case of Support Vector Machines
— NL = Sparse Singular SupportVector Machines (Hyperparameter-free, with fuzzy boundary)

Special version of Decision Trees

— Finds a single multi-attribute rule

— e.g., If the test sample’s features F1, F25,and F100 are closer to [0.12,0.26,0.27] comparing [0.26,0.28,0.29], it is
labeled |, otherwise 0.

It shares characteristics with Linear Discriminant Analysis (LDA) and Deep Learning:
simultaneously performs dimension reduction and classification.

— NL : Original Space
— LDA: Linear Latent Space
— Deep Learning: Non-linear Latent Space

natural-learning.cc




Superior Compression = Greater Intelligence

Compression Represents Intelligence Linearly

Yuzhen Huang"1 Jinghan Zhang"1 Zifei Shan? Junxian He'
1The Hong Kong University of Science and Technology 2Tencent
{yhuanghj, jzhangjv, junxianh}@cse.ust.hk

Abstract

There is a belief that learning to compress well will lead to intelligence
ter}[2006). Recently, language modeling has been shown to be equivalent to
compression, which offers a compelling rationale for the success of large
language models (LLMs): the development of more advanced language
models is essentially enhancing compression which facilitates intelligence.
Despite such appealing discussions, little empirical evidence is present
for the interplay between compression and intelligence. In this work, we
examine their relationship in the context of LLMs, treating LLMs as data
compressors. Given the abstract concept of "intel]_igence”, we adopt the
average downstream benchmark scores as a surrogate, specifically targeting
intelligence related to knowledge and commonsense, coding, and math-
ematical reasoning. Across 12 benchmarks, our study brings together 30
public LLMs that originate from diverse organizations. Remarkably, we find
that LLMs' intelligence — reflected by average benchmark scores — almost
linearly correlates with their ability to compress external text corpora. These
results provide concrete evidence supporting the belief that superior com-
pression indicates greater intelligence. Furthermore, our findings suggest
that compression efﬁcien(?r, as an unsupervised metric derived from raw
text corpora, serves as a reliable evaluation measure that is linearly associ-
ated with the model capabilities. We open-source our compression datasets
as well as our data collection pipelines to facilitate future researchers to

assess compression properlym

} Huang,Yuzhen, et al. "Compression Represents Intelligence Linearly." arXiv preprint
natural-learning.cc arXiv:2404.09937 (2024).




Experimental Evaluation: Datasets

* 17 benchmark datasets for binary classification from the healthcare domain where NL's strength is
supposed to be at the level of black-box models due to noisy labels in this domain (Semenova et al., 2023)

— 9 high-dimensional datasets (n<<p)

— 8 low-dimensional datasets (n>>p)

* 10 Stratified sampling for each dataset (10-fold) to reduce the bias of train/test split

— |70 train/test set in total

High-Dimensional (Gene Expression) Datasets (N<<P)

Low-Dimensional Datasets (N>>P)

Dataset #p #n  MjClass ID* Description Dataset #p #n MjClass ID* Description

AP_Breast_Colon 10935 630 54.60% 1145 Breast vs. Colon Cancer blood-transfusion 4 748 76.20% 1464 Donor of Blood Transfusion (UCI)
AP _Breast Kidney 10935 604 56.95% 1158 Breast vs. Kidney Cancer |diabetes 8 768 65.10% 42608 Diabetes Patient (OpenML)

AP Breast Ovary 10935 542 63.47% 1165 Dbreast vs. Ovarian Cancer |Haberman 14 306 73.53% 43 Breast Cancer Survival (UCI)

AP _Colon_Kidney 10935 546 52.38% 1137 Colon vs. Kidney Cancer [heart-statlog 13 270 55.56% 53 Heart Disease Database (UCI)
OVA_Colon 10935 1545 81.49% 1161 Colon Cancer vs. others hiva_agnostic 1617 4229 96.48% 1039 AIDS HIV infection (ETH Zurich)
OVA_Kidney 10935 1545 83.17% 1134 Kidney Cancer vs. others | ilpd-numeric 10 583 71.36% 41945 Indian Liver Patient Dataset (UCI)
OVA Lung 10935 1545 91.84% 1130 Lung Cancer vs. others thoracic-surgery 37 470 85.11% 4329 Lung Cancer life expectancy (UCI)
OVA_Omentum 10935 1545 95.02% 1139 Omentum Cancer vs. others [wdbc 30 569 62.74% 1510 Breast Cancer Wisconsin (UCI)
OVA Ovary 10935 1545 87.18% 1166 Ovarian Cancer vs. others | * OpenML dataset identifier

natural-learning.cc
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Finetuning baseline models

We compare NL versus finetuned baseline models to have a fair comparison.Ve get the practical configuration
settings from applied machine learning sources [|] and [2] for a realistic comparison.

Hyperparameter Search Tested Combinations

Decision Trees MaxSplits=[1, 5, 10, 20, 50, n], MinLeafSize=[1, 5, 10, 20, 50] 30
Linear SVM C=[100, 10, 1.0,0.1,0.001] 5

SVM-RBF C=[100, 10, 1.0,0.1,0.001], gamma=[2-'6... 28] as suggested by [2] with step of 22 65
Random Forests (RF) MaxSplits =[1, 5, 10, 20, 50, n], MinLeafSize=[1, 5, 10, 20, 50], NumTrees= [10,50, | 00] 90
Deep Neural Networks (DNN) Batch size=32, Optimizer=Stochastic gradient descent, max epoch of 20, Hidden 54

Layers=[10, 30, 50], Layers=[2, 3, 4], Learning Rate=[0.01, 0.001] and Activation
Functions={RelU, Tanh, Sigmoid}

Latent Discriminant Analysis (LDA)  Hyperparameter-free I

Logistic Regression (LR) Hyperparameter-free I

Natural Learning (NL) Hyperparameter-free I

[1] https://machinelearningmastery.com/
[2] Fernandez-Delgado, Manuel, et al. "Do we need hundreds of classifiers to solve real world classification

. problems?." The journal of machine learning research 15.1 (2014): 3133-318I.
natural-learning.cc



https://machinelearningmastery.com/

Results: Accuracy and F-measure, Winning Ratio

* Critical Difference Diagram, Horizonal line indicates lack of statistical significance at alpha = 0.01 (Nemenyi's test)

CcD
(e
CD
9 8 76 5 4 3 2 1
o8 765 43 2 1 I R 5 — , ,
I I P O I O Ll .
L 40f 40.00% 38.82%
— s
™ 30r
SVMRBF 68412 33294 pNN SVMRBF 84— DNN £
LR 66704 | RF LR 68294 | RF <20
DT 60353 37529 gqyMm DT 58265 38265 | pA >
INN 60265 39765 | pA 1NN 52353 38441 gyMm 107
4 8647 NL 4 9059 NL ol
SVM RF DNN
Accuracy F-measure Winning Ratio(Accuracy)

Considering simplicity and extreme sparsity level of NL comparing black box models, this is an impressive result

Il ) * Demsar, Janez. "Statistical comparisons of classifiers over multiple data sets." The .
natural-learning.cc Journal of Machine Learning Research 7 (2006): 1-30.




This extraordinarily low variance can be related to the
simplicity of the model which results in larger Rashomon
ratio [|] due to existence of noisy labels [2]

Results: Average Bias-Variance

0.3 |
(0.005,0.259)
SVMRBF We observed several
performance cases
0021 (0.074,0.189) 7 where test accuracy was
2 LR considerably higher than
B (0.000,0.139) train accuracy.
© 1NN
> 01k (0.037,0.099) _
(0.023,0.081)pT In humans, a study
RF (0.076,0.032) revealed that in certain
(0.076,0.029) SI\\I/MLDAO'OSZ’O'O?’” NL situations, previously
0 | | | |  (0.111,0.018) unseen prototypes
0 0.02 0.04 0.06 0.08 0.1 0.12 might be classified more
Bias accurately during the
testing phase than the
[1] Breiman, Leo. "Statistical modeling:The two cultures (with comments and a original training stimuli
rejoinder by the author)." Statistical science 16.3 (2001): 199-231. [3].

[2] Semenova, et al. "A Path to Simpler Models Starts With Noise.“, NeurIPS 2023
[3] David R. Shanks, Concept Learning and Representation: Models

) in Smelser, Neil J., and Paul B. Baltes, eds. International encyclopedia of the social
natural-learnlng.cc & behavioral sciences.Vol. | |.Amsterdam: Elsevier, 2015.




Results: Interpretability

As a quantitative metric, we compare the ratio of important features. But this does not reflect the real
interpretability value of NL

* NL finds a meaningful subset of features with equal weights for each future

* Makes the interpretability even better than DT and LR

(o)
o

LN
(@)
T

29.81%

N w
o o

Ratio of Important Features
o

o

NL DT RF LR
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Results: Ratio of Support Vectors

100 . : 97.63%
&
£ 80r
O NL has always 2 support vectors
> While linear SYM uses 30% of
é 60 - samples as support vectors
Q
>
» 40r
Y
)
Q
= 201
4
0 0.33%
NL SVM SVMRBF
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Results: Prediction Runtime

NL advances the state-of-the-art prediction speed, 5x of
decision trees, and 10x of DNNs.

500 | | | | | | | |

401X

Prediction Time Comparing NL

natural-learning.cc o




Prediction Dissimilarity to Other Classifiers

We compared the similarity of NL predictions to other classifiers based on 160k predictions they made on 170 training sets.
Deep Neural Networks were found to be the best match with NL in terms of behavior on predictions, with a 5.65%
mismatch in their predictions! The less similar classifier was logistic regression.

N N
o (@)
|
N
w
N
a
2

[N
6)
I

RN
o
[

6.05% 5.96% 6.17% 5.65%

&)

Dissimilarity of precition of NL

o
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Example of NL Models: Colon Cancer Gene Expression

Dataset:OVA_Colon (1545 patients X 10935 genes)

‘ Accuracy
on Test Set
Natural Learning NL 98.05
Prototype ‘GM'"”tes DNN 97.40
Class 0 Patient Index
rrortypel Prototype’s Features (genes) S'II:' 2282
Cancer) I x206418_at x206430_at x210302s_at' QUM 96.75
brotoype _SNO(1008) 953 498.6 148.2 '
(Colon — SN1(155)  639.6 736.9 580.7
Cancer)

Learned Prototype=(2 patients X 3 genes)
Model Sparsity Ratio = 3.55 X 107

natural-learning.cc 8




Examples of Discovered Prototypes by NL and performance

Learned Prototype on the Train set (90%)

x206418_at  x206430_at  x210302_s_at
Class 0 (S#1008)  95.3 498.6 148.2
Class 1 (S#155) 639.6 736.9 580.7

Accuracy on Test Set (10%)
NL DNN RF DT SVM

\\98.05 97.401 98.05 |'88.05 | 96.75

/ Dataset:OVA_Colon, n-fold=4/10 (seed=42) \

seed=42) \

Learned Prototype on the Train set (90%)

x1559477_s_at x219873_at
Class O (S# 879) 461.3 11311
Class 1 (S# 1378) 606.1 1635.2

/ Dataset:OVA_Ovary, n-fold=9/10 (

Accuracy on Test Set (10%)

/ Dataset: blood

Learned Prototype on the Train set (90%)

vl v2 v3
Class O(S# 678) 23 19 4750
Class 1(S# 45) 4 20 5000

Accuracy on Test Set (10%)
L DNN RF DT SVM

N
\\ 80.00 77.33 76.00 76.00 80.00

-transfusion, n-fold=3/10 (seed=4

NL DNN RF DT SVM
\94.19 91,61 183,55 |193:55 || 9161

Dataset: diabetes , n-fold=7/10 (seed=42)

Learned Prototype on the Train set (90%)

plas mass
Class O(S#260) 155 33.3
Class 1(S#670) 154 30.9

Accuracy on Test Set (10%)

natural-learning.cc

NL DNN RF DT SVM
237 75:00 | 75,00 1 71.05

Dataset:OVA_Omentum, n-fold=9/10 (seed=42

p-

Learned Prototype on the Train set (90%)

x206067_s_at x37892_at
Class O(S# 1419) 8314.6 14771.9
Class 1(S# 304) 11813.7 17220.4

Accuracy on Test Set (10%)
DNN RF D

11 SVM
92.26  94.19 | 94.19 | 93.55 /

o

Learned Prototype on the Train set (90%)

NL
K 94.19

/ Dataset:HIVa_agnostic , n

-fold=1/10 (seed=42)

attr82 attrl66 attrl048 attrl324
Class O (S# 1542) 0 0 0 0
Class 1 (S# 429) 1 1 1 il

Accuracy on Test Set (10%)
DNN RF DT SVM
96.45 97.16 96.93 93.14 /

NL
\ 97.40

89



Examples of Discovered Prototypes by NL and performance

=42) \ / Dataset: thoracic -fold=2/10(seed=42 / Dataset: wdbc, n-fold=4/10 (seed=42) \

/ Dataset: ilpd-numeric,

n-fold=3/10 (seed -surgery, n
Learned Prototype on the Train set (90%) Learned Prototype on the Train set (90%) Learned Prototype on the Train set (90%)
vl v6 v9 v10 v 2 v4 3 v7_1 v7_2 va_2 v2 vlil vi3 v18 v22 v23 v25 v28
Class O(S#7) 26 16 35 1 Class 1(S#51) 1 0 al 0 1 Class O (S#348) 14.74 0.3428 2.537 0.01067 17.93 1142 0.122 0.1251
Class 1(S#531) 22 14 3.8 ikt Class O (S#129) O 1 0 1 0 Class 1 (S#206) 16.68 0.2711 1.974 0.00826 20.24 117.7 0.149 0.1252
Accuracy on Test Set (1 0%) Accuracy on Test Set (1 0%) Accuracy on Test Set (1 0%)
DNN RF DNN RF DNN RF

\\ 70 69 67.24 67.24 67 24 67 24 / \\ 89 36 89.36 87.23 65 96 89 36 / \\ 98 25 98.25 94.74 94 74 98 25 /

Original Features
Orlgl’w ! zFe,a,‘t.l,"es E 303 Natural Sparse Embeddlng T 3 Natural Sparse Embedding
Hill i HiHHE o —_— n - : :
o[ | £ ° € >2411
2|l | @ = 3
© ol L 5 8
@ >59740 P $:>8329
= s = o
< IS . : < o : :
_ o Pixel 267 Pixel_268 Pixel 408 — o Pixel_401 Pixel_428
All Pixels Prototype Features All Pixels Prototype Features
MNIST 0 vs. | (The easiest) — Test Accuracy: 99.48% MNIST 4 vs. 9 (The most difficult) — Test Accuracy: 85.64%
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All datasets

natural-learning.cc

Dataset (Kfold)

TrainAcc Iterations Prototype Samples Prototype Core Features

AP_Breast_Colon(kfold=1)
AP_Breast_Colon(kfold=2)
AP_Breast_Colon(kfold=3)
AP_Breast_Colon(kfold=4)
AP_Breast_Colon(kfold=5)
AP_Breast_Colon(kfold=6)
AP_Breast_Colon(kfold=7)
AP_Breast_Colon(kfold=8)
AP_Breast_Colon(kfold=9)
AP_Breast_Colon(kfold=10)
AP_Breast_Kidney(kfold=1)
AP_Breast_Kidney(kfold=2)

AP_Breast_Kidney(kfold=3)

AP_Breast_Kidney(kfold=4)
AP_Breast_Kidney(kfold=5)
AP_Breast_Kidney(kfold=6)
AP_Breast_Kidney(kfold=7)
AP_Breast_Kidney(kfold=8)
AP_Breast_Kidney(kfold=9)

AP_Breast_Kidney(kfold=10)

AP_Breast_Ovary(kfold=1)
AP_Breast_Ovary(kfold=2)
AP_Breast_Ovary(kfold=3)
AP_Breast_Ovary(kfold=4)
AP_Breast_Ovary(kfold=5)
AP_Breast_Ovary(kfold=6)
AP_Breast_Ovary(kfold=7)
AP_Breast_Ovary(kfold=8)
AP_Breast_Ovary(kfold=9)
AP_Breast_Ovary(kfold=10)

95.94
96.83
96.30
96.83
96.47
95.59
96.47
95.94
93.12
96.12
96.14
98.34

97.42

96.13
97.24
97.98
96.32
96.14
97.79

97.24

94.88
93.84
96.11
94.05
97.13
96.52
94.67
93.03
95.49
96.11

19
18
19
17
18
22
20
18
19
19
20
23

20

26
30
22
21
21
20

20

19
21
20
19
18
15
17
18
16
20

502 &348
531 &489
279 &454
242 &500
309 & 39
193 &500
5 &285

284 &305
190 &373
358 & 95
349 &143
139 &159

157 & 6

47 &393
221 & 43
345 &162
47 &492
252 &160
196 & 48

411 &316

158 &179
|18 &385
328 & 85
19 &385

449 &272
154 &138
307 &140
61 &441

223 &334
175 &422

2726, 4765, 6647,7000,10203

2726, 3268, 5519, 5681, 7222, 8866, 9979,10593

1807,2958,4465,4576,61 | 1,7034,7251,7829,8281,9265
2566,4424,4451,7204,7448

51,2532,2674,4765,5716,6907,7439,8229

2532,7845

2532,4204,4215

459, 2532, 3382, 4215, 6923, 7083, 7845, 9591,10750

2726,9961

2097,2958,3268,4501,611 |

401, 524,4333,4592,4682,7742

14, 3536, 4504, 6064, 7247, 7548, 7808, 9950,10750

92, 294, 487, 1023, 1615, 2924, 3083, 3088, 3196, 3259, 3324, 3366, 3536, 3830, 4387,
4913, 6418,7022,7096,7152,7167,7247,7619, 8136, 8723, 9519, 9735,
9760,10024,10152,10459,10565,10581,10603,10623,10657

1049, 1050, 2355, 2393, 2924, 3229, 6418,10753
2109,2768,3196,3536,7022,9165,9750

3196,3324,7247,7578

3196,9736

3052,7742,8219,8749

2,3316,4900,6723,7061,8136,8217

2, 1096, 1097, 1842, 2768, 3005, 3025, 3039, 3049, 3083, 3195, 3196, 3229, 3324, 3406,
3449, 3521, 3536, 4713, 5076, 5486, 5834, 7089, 7096, 7220, 7247,7621, 7795, 7808, 7971,
8843, 9166, 9665, 9795, 9980,10039,1033 |

3296,4330

1725,2146,2537

4330,9212

1465, 2537,9212,10501

2,2643,2821, 3043, 4198, 4315, 6983, 7832,10082

285, 2896, 4862, 7300, 7416, 8842, 9247, 9457,10667

2643,4536,7741

4330,7592
50,1713,2643,2966,3179,3194,3565,3976,4308,4494,6287,6342,7286,7592
2608, 4536,7101, 7592, 9212, 9270, 9929,10082



All datasets
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Dataset (Kfold)

TrainAcc Iterations Prototype Samples Prototype Core Features

AP_Colon_Kidney(kfold=1)
AP_Colon_Kidney(kfold=2)

AP_Colon_Kidney(kfold=3)

AP_Colon_Kidney(kfold=4)

AP_Colon_Kidney(kfold=5)
AP_Colon_Kidney(kfold=6)

AP_Colon_Kidney(kfold=7)

AP_Colon_Kidney(kfold=8)

AP_Colon_Kidney(kfold=9)
AP_Colon_Kidney(kfold=10)
OVA_Colon(kfold=1)
OVA_Colon(kfold=2)
OVA_Colon(kfold=3)
OVA_Colon(kfold=4)
OVA_Colon(kfold=5)
OVA_Colon(kfold=6)
OVA_Colon(kfold=7)
OVA_Colon(kfold=8)
OVA_Colon(kfold=9)
OVA_Colon(kfold=10)
OVA_Kidney(kfold=1)
OVA _Kidney(kfold=2)
OVA_Kidney(kfold=3)
OVA _Kidney(kfold=4)
OVA_Kidney(kfold=5)
OVA_Kidney(kfold=6)
OVA _Kidney(kfold=7)
OVA_Kidney(kfold=8)
OVA_Kidney(kfold=9)
OVA_Kidney(kfold=10)

98.37
97.56

98.98

98.37

97.36
98.17

98.37

97.96

98.78
97.96
95.32
96.33
96.19
96.76
96.33
96.19
95.83
96.69
95.47
96.48
97.41
97.77
98.13
97.48
97.27
97.99
98.35
97.84
97.91
97.84

28
22

23

20

22
23

18

19

26
29
18
19
22
18
17
18
19
18
21
17
25
22
24
25
23
23
28
21
25
27

299 & 28
313 &426

405 &471

125 &149

280 &158
263 &273

310 &276

213 &433

161 &283
392 &422
1253 &1241
363 &130
827 &1346
142 &910
326 &133
1231 & 567
924 &1097
963 &929
| &1085
793 &1106
1231 & 94
422 &1242
369 &1375
1375 &1156
125 &1215
686 &47 |
1304 & 137
395 &903
814 &1275
408 & 75

1853,2266,4133,4480,4609,6825,71 1 1,7759,8237,8896

3541,7602,10750

4,151, 863,
913,1076,1151,1359,1448,1508,1855,2078,2916,3208,3598,4490,4832,5599,6009,7914,7915,
7958,8813

1151, 1448, 1460, 1686, 1806, 2918, 3128, 3378, 3602, 4158, 5459, 5986, 6300, 6899, 6948,
7048,7069,7111,7262,7560, 7814, 7908, 8179, 8813, 8950, 9049, 9428, 9916,
9931,10138,10142,10305,10766,10767,10841,10866

1448, 1460, 2013, 3208, 8724, 9530,10878
1051,1605,1988,2575,2951,3109,4427,4609,4729,5862,5867,8237,881 3,8896,9395

76, 1756, 1848, 2708, 2718, 2812, 2836, 2906, 2962, 4141, 4433, 4543, 5053, 5251, 5256,
6135,6292,6910,7187,7327,7531, 7966, 8179, 8526, 9318, 9658, 9677, 9745, 9790,10138
484, 1076, 1 151, 1625, 1978, 2024, 2245, 2389, 2603, 3094, 3296, 3598, 4112, 4598, 4609,
5583, 6490, 6824, 6825, 7497, 7778, 8179, 8578, 8657, 9318,10171,10580,1084 1

1151, 1448, 2519, 2697, 3296, 3528, 3567, 3950,10138,10772,1084|
1448,1805,2836,3912,4133,5410,5459,5855,7963,8578

2453,3357

2702, 2983, 4562, 6082, 6857, 7661,10045

4755, 6857,10865,10878

3352,3357,4562

1916,2702,4432,4562,6856,6945,9818

5205, 6945, 8215,10045

3567,5894,6045,6856,7787

4562,5477,7787

3245,3357

2822,4325,6857,6945,7787,8215

2479,5921,7179, 7246, 9989,10078

3147,10018

3147,3236,3448,3528,4660,5743,7179,9769

1412,2055,3181,9989

3146,5815,7827,8828,9769,9826

991,2867,3147,6834,8828

2867,3528,4514,5180,7113,8100,9198,9769,9955

3147,3528, 6861, 7802, 9769, 9838,10009,10054,10755

3147,8135,9198,9989

3528, 9989,10018



All datasets

Dataset (Kfold) TrainAcc Iterations Prototype Samples Prototype Core Features
OVA_Lung(kfold=1) 97.84 15 1248 & 500 4420, 5138, 5855, 6991,10796,10832
OVA_Lung(kfold=2) 97.55 21 136 &121 4420,10796
OVA_Lung(kfold=3) 98.06 17 971 &380 2903, 4420, 5855, 6991, 7587, 81 12, 8134, 8769, 8821, 9770,10796
OVA_Lung(kfold=4) 97.77 16 564 &590 4420,5875,6991,8315
OVA_Lung(kfold=5) 98.13 12 131 &819 2669, 3010, 3370, 4420, 5930, 6991, 8134,10796,10810
OVA_Lung(kfold=6) 97.77 13 1257 & 278 1992, 4420, 9599, 9797,10796
OVA_Lung(kfold=7) 97.92 17 1122 & 828 3068, 4420, 6991, 7167, 8134, 9797,10743,10796
OVA_Lung(kfold=8) 97.99 18 557 &382 5490, 6991, 9991,10796
OVA_Lung(kfold=9) 97.84 18 963 &584 4015, 4420, 7585,10810
OVA_Lung(kfold=10) 97.48 15 84| &833 4420, 6991,10796
OVA_Omentum(kfold=1) 94.17 16 924 &545 943,1304,1922
OVA_Omentum(kfold=2) 95.18 16 584 &697 1950,2528,5200,9033
OVA_Omentum(kfold=3) 95.32 16 139 &1275 3268,4192,5016,5112,10127,10806
OVA_Omentum(kfold=4) 95.33 17 702 &359 3203,5546,9097
OVA_Omentum(kfold=5) 94.97 13 704 &835 2290, 2717, 3264,10443
OVA_Omentum(kfold=6) 94.89 16 358 &1247 3904,4292,5777,9229
OVA_Omentum(kfold=7) 94.68 14 1349 & 832 1799,2246,7965
2, 864, 1004, 1845, 1982, 2030, 2431, 2672, 2674, 2740, 2895, 3360, 4138, 4210, 4249, 4250, 4309,
OVA_Omentum(kfold=8) 95.54 10 277 &717 4337, 4787, 4858, 4889, 5333, 571 1, 6643, 6760, 6926, 7635, 7642, 7781, 8304, 8433, 8697, 9142,
9362, 9364,10139,10264,10341,10357,10797,10806
OVA_Omentum(kfold=9) 95.18 15 270 &1277 3268,10806
OVA_Omentum(kfold=10) 95.18 15 536 &842 428, 949,1251,3836,4287,6084,8701,927 |
OVA_Ovary(kfold=1) 89.14 15 100 &1384 3616,4249,5042,7131,9664
OVA_Ovary(kfold=2) 91.87 17 920 &1099 7137,783|
OVA_Ovary(kfold=3) 88.71 5 1239 & 715 1537 features
OVA_Ovary(kfold=4) 90.58 16 1388 & 641 246,3007,4152,4369
OVA_Ovary(kfold=5) 93.24 16 1241 &1355 34,7243,7831
OVA_Ovary(kfold=6) 89.64 16 1225 & 406 454,4369
OVA_Ovary(kfold=7) 90.08 18 1035 & 965 6071,8733
OVA_Ovary(kfold=8) 89.36 16 968 &662 3268,8482
OVA_Ovary(kfold=9) 91.44 16 264 &238 246,7243
OVA_Ovary(kfold=10) 89.43 17 557 &1042 3268,4100
blood-transfusion(kfold=1) 76.97 2 4 &84 23
blood-transfusion(kfold=2) 76.52 2 448 &312 23
blood-transfusion(kfold=3) 76.52 2 43 &610 1,2,3
blood-transfusion(kfold=4) 77.41 2 4] &61 1 1,2,3
blood-transfusion(kfold=5) 77.12 1 47 &247 1,2,3,4
blood-transfusion(kfold=6) 77.41 2 4] &612 1,2,3
blood-transfusion(kfold=7) 76.71 2 41 &607 1,2,3
blood-transfusion(kfold=8) 76.52 2 42 &610 1,2,3
blood-transfusion(kfold=9) 77.15 2 40 &612 1,2,3
blood-transfusion(kfold=10) 76.23 2 10 &453 23

natural-learning.cc



All datasets

Dataset (Kfold) TrainAcc Iterations Prototype Samples Prototype Core Features
diabetes(kfold=1) 76.70 3 348 &517 2,6,7
diabetes(kfold=2) 76.99 3 353 &509 2,6
diabetes(kfold=3) 76.41 3 311 &265 2,6
diabetes(kfold=4) 73.81 3 553 &443 1,2
diabetes(kfold=5) 76.85 3 348 &525 2,6,7
diabetes(kfold=6) 77.42 3 355 &527 2,6,7
diabetes(kfold=7) 76.73 3 598 &236 2,6
diabetes(kfold=8) 77.86 3 350 &516 2,6
diabetes(kfold=9) 77.60 3 352 &519 2,6
diabetes(kfold=10) 76.99 2 575 &482 1,2,6,7
haberman(kfold=1) 76.00 1 212 &215 2,4
haberman(kfold=2) 76.00 2 85 &72 1,2,12
haberman(kfold=3) 76.81 1 103 & 98 2,6
haberman(kfold=4) 75.64 1 212 &214 24
haberman(kfold=5) 76.45 2 235 &225 1,2
haberman(kfold=6) 76.73 1 96 &99 2,6
haberman(kfold=7) 75.36 1 213 &216 2,4
haberman(kfold=8) 74.55 1 214 &217 24
- 1 haberman(kfold=9) 76.09 1 154 &158 2,4
natu ral Iearn I ng'cc haberman(kfold=10) 74.55 1 212 &215 2,4




All datasets
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Dataset (Kfold) TrainAcc Iterations Prototype Samples Prototype Core Features
heart-statlog(kfold=1) 60.49 5 16 &213 3,10
heart-statlog(kfold=2) 78.19 2 32 &53 3,12
heart-statlog(kfold=3) 60.91 3 102 &168 10,12
heart-statlog(kfold=4) 67.90 2 86& 4 9,12
heart-statlog(kfold=5) 77.37 4 160 &164 3,12
heart-statlog(kfold=6) 78.19 2 7 &76 3),113)
heart-statlog(kfold=7) 77.78 4 162 &166 3,12
heart-statlog(kfold=8) 78.19 2 35&58 3,12
heart-statlog(kfold=9) 69.14 3 163 &222 10,12
heart-statlog(kfold=10) 78.19 2 63 &3 3,13
hiva_agnostic(kfold=1) 96.53 3 1397 & 381 83, 167,1049,1325
hiva_agnostic(kfold=2) 61.32 3 786 &960 862,1272
hiva_agnostic(kfold=3) 96.61 2 2604 &2648 83, 197,765,1049,1325
hiva_agnostic(kfold=4) 96.03 4 99 &2006 76,892
hiva_agnostic(kfold=5) 91.20 3 1323 &3583 337,618
hiva_agnostic(kfold=6) 96.61 3 2596 &3276 83, 197,765,1049,1325
hiva_agnostic(kfold=7) 96.43 3 1428 & 791 200,1234
hiva_agnostic(kfold=8) 91.28 3 1316 &3582 337,618
hiva_agnostic(kfold=9) 96.66 3 193 &2492 83,1049,1325
hiva_agnostic(kfold=10) 96.58 4 200 &797 83,1049,1325
ilpd-numeric(kfold=1) 71.76 3 386 &251 6,7
ilpd-numeric(kfold=2) 72.90 3 470 & 75 1,6
ilpd-numeric(kfold=3) 73.90 3 476 & 7 1,6,9,10
ilpd-numeric(kfold=4) 72.57 5 301 &367 1,6
ilpd-numeric(kfold=5) 73.71 2 65 &409 1,7
ilpd-numeric(kfold=6) 71.81 4 475 & 75 1,6
ilpd-numeric(kfold=7) 73.14 3 476 & 6 1,6,9,10
ilpd-numeric(kfold=8) 73.52 3 477& 6 l,6,9,10
ilpd-numeric(kfold=9) 74.29 3 480& 7 l,6,910
ilpd-numeric(kfold=10) 72.71 3 479& 7 l,6,9,10
thoracic-surgery(kfold=1) 85.11 1 319 &35 6,8
thoracic-surgery(kfold=2) 85.34 1 44 &118 12,13,18,19
thoracic-surgery(kfold=3) 85.82 1 49 &115 12,13,18,19
thoracic-surgery(kfold=4) 84.87 3 69 &71 3,12
thoracic-surgery(kfold=5) 84.87 1 44 &113 12,13,18,19
thoracic-surgery(kfold=6) 86.29 1 46 &117 12,13,18,19
thoracic-surgery(kfold=7) 85.58 3 267 & 13 l,3,5,12
thoracic-surgery(kfold=8) 86.76 1 48 &116 12,13,18,19
thoracic-surgery(kfold=9) 85.34 1 43 &116 12,13,18,19
thoracic-surgery(kfold=10) 85.82 1 49 &122 12,13,18,19
wdbc(kfold=1) 94.73 5 207 &446 22,23,25,26,28,30
wdbc(kfold=2) 94.73 4 214 &450 22,23,25,29
wdbc(kfold=3) 94.92 5 208 &446 22,23,25,26,28,30
wdbc(kfold=4) 94.73 5 313 &187 2,11,13,18,22,23,25,28
wdbc(kfold=5) 93.36 4 167 &203 I,4,72425
wdbc(kfold=6) 93.55 6 312 &184 13,22,23,25,28
wdbc(kfold=7) 95.13 5 209 &445 19,22,23,25,26,28,29,30
wdbc(kfold=8) 94.14 4 122 &185 2,5,6,7,12,13,17,22,23,25,27,29
wdbc(kfold=9) 94.92 4 385 &189 2,22,23,27,29
wdbc(kfold=10) 93.75 5 99 &431 3,5,6,7,8,10,15,23,25,26,27,28,29



Advantages of Prototype Theory in Machine Learning

|. Model’s Transparency: can be explained to non-technical people.

2. Explainable Decisions
— Your loan is rejected because you resemble a rejected reference case compared to an accepted one.

3. Interpretable Decisions
— Your loan is rejected because your income and credit are more like the rejected reference case than an accepted one.

4. Fair rule: Human-friendly reasoning with a universal rule that works for the majority (ideally, all).

u

Humans with limited working memory better understand the model due to the extreme sparsity
*  In Gene Expression data, OVA_Colon: (1545 patientsX 10935 genes) = (2 patients x 3 genes) > the sparsity of 3.55X 10”7

Low model variance due to sparsity—> better generalization to very different unseen cases
. Ultra-fast prediction speed due to small model size

Simple to implement and code: math-free, optimization-free, no package dependency

vV ® N O

. Inherent robustness to noisy labels (great applications in healthcare, criminal justice, finance)
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Applications: Alternative for Decision Trees/Logistic Regression

* In applications prioritizing interpretability, explainability, and transparency, such as High-
Stakes Decisions, where slight differences in accuracy are acceptable compared to
black-box models, NL can replace or complement decision trees and logistic
regression due to its more accurate, simple, human-friendly, and fair
explanations
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Applications: Performance near to Black-box with Noisy Labels

* In applications where humans are the sample, such as healthcare, criminal justice,
and finance, NL can provide a high value.

— In these domains, typically, labels are noisy, and black-box models provide the same
performance as simple models

* Another reason: existence of a prototype is guaranteed
— A clinical case in healthcare.
— A case study in finance.
— A precedent case in criminal justice.
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Applications: key player in discriminant analysis of omics data

* In discriminant analysis of high-dimensional omics data (e.g., gene expression)
NL can overcome the curse of dimensionality and the challenge of limited
samples and generate highly sparse and interpretable models that are essential
in these domains.
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Applications: State-of-the-art in prediction speed

* NL models are extremely small, making them suitable for real-time
applications where prediction speed is crucial

— e.g., defense, online trading
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Applications: State-of-the-art in embedded machine learning

* For embedded systems (e.g., wearable devices) where processing and memory
constraints exist, NL's extremely sparse models require much lower computing
resources (processing and memory)
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Applications: Natural choice for binary input data

* In handling high-dimensional binary data where dimensionality reduction or
representation learning do not provide added value, NL offers a promising alternative;
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Applications: Ultra-fast classification of trivial cases in vision

* In the field of vision, NL does not appear to be competitive due to lack of a
mechanism for representation learning and violation of one of its assumptions
(singularity of prototypes)

* NL can still be useful for ultra-fast classifying of trivial cases
— (e.g., digit 0 vs. | in MINIST: 99.48% accuracy with model of 2x3 matrix)
— frog vs. airplane in CIFAR-10, 86 % accuracy with model of 2x10 matrix)
— Main applications
* better prediction speed
* interpretability
* explainability

* |t also can be used for detection of discriminatory noise

natural-learning.cc




CIFAR-10: Cat vs. Dog
Example of Application of NL in vision X _train:[10000x 3072] X_test: [2000x 3072]

Dog Prototype (Sample#2778) - Original Features Cat Prototype (sample#3194) - Original Features

Vanilla DNN 63.20%
Hidden Layers=3

Hidden Nodes=50

ReLU activation

MaxEpochs=20

LearnRate=0.01

MiniBatchSize=32

Random Forest 65.55%
100 trees
Li SVM 58 459 Dog Prototype (Sample#2778) - Sparse Features by NL Cat Prototype (sample#3194) - Sparse Features by NL
Inear o ()
C=1 (default)
Natural Learning 59.05% Feature
682

Feature 35

\

2 samples and 3 features
(only 6 values from the training set)

Feature

natural-learning.cc 273




Dual Process Theory and Natural Learning

Natural Learning Emulates the Brain’s System | ‘s superfast processing

Cognitive Processing Theory

Kahneman, D., &
Tversky,A. (1974).

Dual
Process

Theory

Categorization Theories

Al/Machine Learning’s
Best Resemblance

Neuroscience

Brain’s Confidence
Weighting (Adaptive
decisions). Evidence by
Meyniel & Stanislas, 2017

# Meta-Learning

% Slow X Slow
S)’Stem 2 in humanS == > ArIStOtIe S-.rhe.ory ...... Rule_based Systems
Reasoning (rule-based) [ _ _of_C_at_eg_o fizatdon |
| X Fast : Deep Neural Networks (best
XFast I '+ | kernel method, Evidence by
:/1 Exemplar Theory : Domingos, 2020 & Belkin et. al,
. . /4
System. I in ..all animals /I __RSuper Fast 1 L2018)
(intuition) N [
|\| Prototype Theory : """ Natural Learning
Evidence by Bowman. et.al, 2020 7 !_ —_— ]
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Kahneman, D., & Tversky,A. (1974). Judgment under Uncertainty: Heuristics and
Biases. Science, 185(4157), 1 124—1131



Brain runs both exemplar and prototype categorization
:;"0:4 eLife RESEARCH ARTICLE ‘ 8 ‘ @

Tracking prototype and exemplar
representations in the brain across
learning

Caitlin R Bowman'?*, Takako Iwashita', Dagmar Zeithamova'*

'Department of Psychology, University of Oregon, Eugene, United States;

“Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, United
States

Abstract There is a long-standing debate about whether categories are represented by
individual category members (exemplars) or by the central tendency abstracted from individual
members (prototypes). Neuroimaging studies have shown neural evidence for either exemplar
representations or prototype representations, but not both. Presently, we asked whether it is
possible for multiple types of category representations to exist within a single task. We designed a
categorization task to promote both exemplar and prototype representations and tracked their
formation across learning. We found only prototype correlates during the final test. However,
interim tests interspersed throughout learning showed prototype and exemplar representations
across distinct brain regions that aligned with previous studies: prototypes in ventromedial
prefrontal cortex and anterior hippocampus and exemplars in inferior frontal gyrus and lateral
parietal cortex. These findings indicate that, under the right circumstances, individuals may form

. representations at multiple levels of specificity, potentially facilitating a broad range of future
natural-learning.cc decisions. e




Brain runs both exemplar and prototype categorization

Natural Learning Deep Learning, SVM, K-NN
( based Categorization) (Exemplar based Categorization)

Lateral parietal cortex
Posterior hippocampus

Ventromedial prefrontal cortex . Lateral occipital cortex

B Anterior hippocampus

Inferior frontal gyrus

Bowman, Caitlin R., Takako Iwashita,and Dagmar Zeithamova. "Tracking prototype
and exemplar representations in the brain across learning." elife 9 (2020): €59360.
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Conclusion

* Prototype theory has been recognized as a Copernican revolution in categorization
theory because it departed from the Aristotelian rule-based approach.

* Now, we expect the same effect in machine learning: a transition from
decision trees (Aristotelian theory of categorization) towards natural
learning (prototype theory of categorization) that provides much better
human-like reasoning and, as we showed, can be more accurate than decision trees in
noisy environments such as healthcare.

* NL’s simple and highly-interpretable models will provide new insights in many
domains.
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Future Work

* Is it possible to implement a local representation learning or feature transformation in
NL's local triplet space? We believe meaningful results in this direction can result in a
white-box version of DNNs.

* How can we boost NL's performance without harming its attractive explainability?

* Is it possible to extend NL for regression?

natural-learning.cc
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